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Overview

e The Human Brain

* The Al Challenge

* Co-Pilots, Trainers and Augmentation
* Augmentation of Humans vs. Augmentation of Machines by Humans

 Human-Al interaction (HAIl) and Interactive Machine Learning (iML)
e HAIl in Healthcare

* HAIll in Cybersecurity

* Future Prospects



Modeling the
numan brain in the
1980s (black box

Timing is everything??
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Our Wonderful Brain
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From the 1990s — Brain Scanning
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Location and circuitry of the amygdala

Amygdala
Hippocampus



Connections to and from the
Amygdala

e Sensory information is sent to the
amygdala to enable emotional learning.

* Dual route model proposes two
pathways:

1. “Low road”

* projects directly from the anterior thalamus
to the amygdala.

e acts as a “first alert” system, carrying a
crude, preliminary sketch of basic properties
of the stimulus.

2. “High road”
e connects the sensory areas of the cortex to
the amygdala

* provides a more comprehensive context for
processing emotional information

* gives rise to a slower affective reaction that
takes into account the complexity and details
of the situation

~ 7 Visual

thalamus



The Brain is a bunch of
Co-Processors

Connected by a Fibre
Network

* Example Cortical Co-Processors

* Frontal Eye Fields (in frontal
cortex, plan eye movements)

 Facial Fusiform Area (inferior

temporal cortex, recognizes
faces)

* Example Subcortical Co-
Processors

* Hippocampus (Memory)
* Amygdala (Fear)
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Building a Brain through Evolution

* Perception-Action Cycle

e Fast Survival - Fear, then other emotions

* Need to learn — Reward processing

* More complex learning — Memory (e.g., squirrel hiding nuts)

* More complex environments — Decision making

* Even more complex environmnets — Al co-processors and agents



Al is another step in the evolution of the brain

* Just another co-processor

* A mobile phone is a hand-held co-processor

* A Voice agent is a wireless audio co-processor
* Al is a cognitive co-processor



Models of Human-Al Interaction

e Al is a Co-Pilot
e Al is an agent or “Master” (not over-lord)
* Al is a cognitive co-processor (ultimately an implant)



The Co-Pilot View

d I‘(lV > ¢s > arXiv:2311.14713

Computer Science > Human-Computer Interaction

[Submitted on 16 Nov 2023 (v1), last revised 29 Nov 2023 (this version, v2)]
The Rise of the Al Co-Pilot: Lessons for Design from Aviation and Beyond

Abigail Sellen, Eric Horvitz

The fast pace of advances in Al promises to revolutionize various aspects of knowledge work, extending its influence to daily life and professional fields alike.
We advocate for a paradigm where Al is seen as a collaborative co-pilot, working under human guidance rather than as a mere tool. Drawing from relevant
research and literature in the disciplines of Human-Computer Interaction and Human Factors Engineering, we highlight the criticality of maintaining human
oversight in Al interactions. Reflecting on lessons from aviation, we address the dangers of over-relying on automation, such as diminished human vigilance
and skill erosion. Our paper proposes a design approach that emphasizes active human engagement, control, and skill enhancement in the Al partnership,
aiming to foster a harmonious, effective, and empowering human-Al relationship. We particularly call out the critical need to design Al interaction capabilities
and software applications to enable and celebrate the primacy of human agency. This calls for designs for human-Al partnership that cede ultimate control and
responsibility to the human user as pilot, with the Al co-pilot acting in a well-defined supporting role.

Comments: 6 pages, no figures



Model Mastery and Servitude: The Surprising Resilience of
Apprentice Models and Outperformed Experts



Human Capability

Devices

Humans

capability

time

Buxton, W. (2001). Less is More (More or Less), in P. Denning (Ed.), The Invisible Future: The
seamless integration of technology in everyday life. New York: McGraw Hill, 145 — 179.



Clinical versus actuarial judgment

* Paul Meehl (1954) first addressed the question:
Which is better?

“...it is clear that the dogmatic, complacent
assertion sometimes heard from clinicians
that ‘naturally’ clinical prediction, being
based on ‘real understanding’ is superior, is
simply not justified by the facts to date”.

Psychometrics: An intro



Visions of
Human-Al
Interaction In
the 1960s

Augmenting Human Intellect:
A Conceptual Framework

By Douglas C. Engelbart
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Machine Augmentation and Human Augmentation

* Automated Driving is an example where the human augments
machine capability

e But the vision was different in the 1960s

* Automation would reduce work requirements and give us too much leisure
time
* Al and other technologies would make us more powerful by augmenting us

* Didn’t happen. We seem to be living in an age where the tools we
have developed are concentrating power in the hands of fewer and
fewer people, leaving many people feeling disempowered rather than
augmented

* So what can we learn from automated driving?



The Changing Human Role In Automated Vehicles

In the 1980s, the Personal Computer made the user pre-eminent,
in the future Human-Al interaction will be increasingly important
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When Human-Al Interaction Matters

Vehicle automation level 0 I 2 3 4 5
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Cooperative Task Performance with Al Agent

Human Device/System
Execution Execution
Decision / Decision
Assessment \ Assessment
Task Computation Task Computation
Interpretation Interpretation
Perception Perception
Sensing & Info Sourcing Sensing & Info Sourcing




Interactive Machine Learning (iML)

Training an Al system



A Simple View of Machine Learning

Improved prediction
after incorporating
human feedback
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IML Case Study in Healthcare



PHASE 1

. User-Centered
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Physician Experience Design (PXD)
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(i) Partial questionnaire,
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Example: Using Delirium Sentiment Analysis
to Improve ML prediction

* Look for the words that clinicians use to describe cases that are later
labeled as having delirium

* Use ML training to create a feature that measures “delirium
sentiment”

* Measure how much delirium sentiment boosts ML prediction of
delirium
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IML in Cybersecurity:
A Data Exfiltration Case Study



Interactive ML (iML) vs. Traditional ML
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Tasks and Feedback for Domain Experts

®

Features, samples, weights, labels, etc.
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Data Exfiltration (Cybersecurity)
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Use Cases

* A compromised account may have the following anomalous
behaviours:
* Unusual login IPs (i.e., login from multiple continent/countries within a day)
Suddenly starting to send emails to too many other employees
Unusual login time
Subjects concerning topics unrelated to their business functions
Sharing files with external accounts frequently



A Dilemma Handling Data Exfiltration Threats

« Anomalous access can be performed by:
+ Abnormal benign system users

+ Malicious system users (can be insiders)

* Distinguish between abnormal benign and malicious users is troublesome
because:

+ It takes too long for cybersecurity experts to investigate manually.

+ It is hard for the machine to identify maliciousness in anomalous activities
automatically.

Normal access

. Anomalous access
- ~ | Healthcare data stora \$\-
Medlcal data input on cloud or local server

36




Detecting malicious user activities using
interactive ML (iML)

Machine learning algorithm to detect
System user activities anomalous activities

O Dot e =

A model that can distinguish between
normal users and malicious users

UL i

V”\

Domain experts using visualization tool to
identify maliciousness
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Active Learning (AL) with Experts
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Research Questions

1. How well can this model prune FA?

OTS
Anomaly
Detection

System

2D p—————, (O .

Anomalies 1

o]

Log Data

@ Log Data

AL model

2. How should AL be adjusted so that
humans can work smoothly with it?
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3. How well can experts label data with AL?



AL in a Binary Classification Task




Focusing on High Information Gain in AL
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Detection of Anomalies in Finance Services Company
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Figure 2: Average expert performance in F1 score compared with the two
models they trained in each round
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Figure 3: A Comparison for Expert and Model Performance in the first
three (“Early”) and last three (“Late”) rounds of training (error bars show
one standard error)






Key Human Factors Issues

* Trust and Reliance

Situation Awareness

Workload

Supervisory Control

Safety

Interruptability and Distraction



Conclusions

* Human-Al interaction is one of the central problems of our time

* For the moment, the focus is on augmenting Al, not on augmenting
humans

* Why focus on iML?

* ML is a set of powerful tools with good results across many applications
e PXD is critical to effective use of ML in healthcare

* Enhanced AL with good anomaly labeling UX is a promising approach for iML
in Cybersecurity

* There are undoubtedly many other applications where iML will be useful
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